BWM(best-worse-method,最好最差法)是一种多准则决策方法,由Jafar Rezaei于2015年提出,其通常用于确定决策标准的权重。其原理是比如5个指标,如果以前AHP就需要5个指标两两的相对重要性数据。但是现在简化为先得到‘最优’和‘最差’这2个指标。得到后需要得到BO(Best-to-other)和OW(Others-to-worst)数据,BO表示‘最好指标与各指标’的相对重要性,OW表示‘各指标与最差指标’的相对重要性。那么5个指标BO就5个数字,OW也5个数字。共10个数字就好了。
得到后使用数学求解规则那套东西来求解,其求解规划数学表达式如下:
Wbest表示最好指标的权重,Wworse表示最差指标的权重,Wj表示某指标权重,cBj表示第j个指标BO时的数据,cWj表示第j个指标OW时的数据,ε(eps)为误差,通常情况下希望该误差越小越好,越接近0越好(其实际意义为规划求解得到和实际情况的gap值)。从上述来看其思想是:本属于该重要性位置的指标,它也应该属于该重要的位置,这是BWM权重的思想意会。
当前有一份数据需要进行BWM权重计算,其BO数据和OW数据如下:
BO数据表示‘最好指标与各指标’的相对重要性,比如上表格中指标2对应的BO数据为1,其意味着‘最好指标与指标2’的重要程度为1,至于1代表的意义,其由标度决定(通常情况下使用1 ~ 9级标度较多即1分最不重要,9分最重要,如果是这样则意味着‘最好指标’相对于指标2来讲,重要性很弱,也即说明指标2很重要的意思);
others-to-worst(OW)表示‘各指标与最差指标’的相对重要性,比如上表格中指标2对应的OW数据为8,其意味着‘指标2与最差指标’的相对重要性为8,如果8代表很重要,那么意味着‘指标2’相对于‘最差指标’,指标2很重要。
确定好研究的指标即准则指标;
确定最优准则和最劣准则,即最优和最劣指标;
确定好使用的标度,比如使用1~9分法,1分表示最差,9分表示最好;
在确认好指标、最优和最劣指标及标度后,准备好分析数据即BO数据和OW数据;
利用数学规划求解计算出权重值;
进行一致性检验。
本例子SPSSAU操作如下:
需要注意的是,SPSSAU提供两个表格分别放BO和OW数据。以及如果有多个专家打分,那么比如BO数据就有多行,依次放入就好。与此同时,在计算结果输出时,1个专家对应着1份权重数据,多个专家就对应多份权重数据,因此结果中还会有多个专家权重的平均值即输出global权重值。
SPSSAU共输出5个表格和1个权重分布图,如下说明。
表格 | 说明 |
---|---|
BO和OW值 | 即放入的原始数据BO和OW数据 |
BWM权重结果 | 展示BWM法计算得到的权重 |
Consistency Index(CI)表格 | 展示一致性指数CI值 |
BWM一致性检验结果 | 展示CR指标及一致性检验结果 |
上表格展示BO和OW数据,即原始输入数据。事实上BWM权重计算时,其前期准备工作包括准备好准则指标,确定最优和最劣指标,确定好标度,然后让专家进行打分,专家打分数据才得到最终的BO和OW数据。
BWM权重计算的原理是数学规划求解,其核心目的是让‘让本应该某指标所属地位,就让其在该位置’,意思是本来该项重要那么其权重就应该高,本来某项不重要那么其权重就应该低。并且这种gap(即数学规划里面的eps指标)应该尽可能小。
上表格展示一致性系数Consistency Index;CI指标为固定值,当前最多为9阶数据,CI指标是接下来CR指标的计算中间值,其为中间过程值并不特别意义。
上表格展示一致性检验及其结果等。上表格展示EPS指标,EPS是BWM进行数学规划求解时计算得到。CI值是查表得到,比如当前是5个专家打分数据,那么对应为2.3。一致性比率CR指标用于评价一致性,CR=EPS指标/CI值,并且对CR进行检验的标准为0.5,如果小于0.5则意味着通过一致性检验,反之则说明没有通过一致性检验。本次数据计算得到CR值为0.005,即通过一致性检验,意味着专家打分数据相对重要性满足一致性,并没有逻辑性问题。
如果没有通过一致性检验,需要考虑是否有出现比如指标1相对指标2更加重要,指标2比起指标3更加重要,那么肯定指标1相对指标3更重要,但数据上却出现指标3比指标1更重要。
请确保分别放入BO和OW数据,并且如果有多个专家,那么对应就有多行BO或者OW数据。
BWM的计算参考文献如下:Rezaei J .Best-worst multi-criteria decision-making method: Some properties and a linear model[J].Omega, 2016, 64(oct.):126-130.DOI:10.1016/j.omega.2015.12.001.
如果没有通过一致性检验,需要考虑是否有出现比如指标1相对指标2更加重要,指标2比起指标3更加重要,那么肯定指标1相对指标3更重要,但数据上却出现指标3比指标1更重要。