非参数检验

  • B站优酷 非参数检验和参数检验的困惑?
  • 非参数检验用于研究定类数据与定量数据之间的关系情况。例如研究人员想知道不同性别学生的购买意愿是否有显著差异。如果购买意愿呈现出正态性,则建议使用方差分析,如果购买意愿没有呈现出正态性特质,此时建议可使用非参数检验。

    分析项 非参数检验分析说明
    性别,购买意愿 不同性别人群购买意愿差异情况如何?(如果购买意愿正态则使用方差分析,如果不正态则使用非参数检验)
  • 分析结果表格示例如下:

    性别(中位数) MannWhitney检验统计量 p
    男(n=10607) 女(n=6795)
    购买意愿 3.44 3.21 -16.44 0.00**
    * p <0.05 ** p <0.01
    • 特别提示
    • 如果X的组别为两组,比如上表中男和女共两组,则应该使用MannWhitney统计量,如果组别超过两组,则应该使用Kruskal-Wallis统计量结果。SPSSAU自动为你选择MannWhitney或者Kruskal-Wallis统计量。

    • 如果p 值小于0.05,但是却出现中位数基本一致没有差异,原因在于数据分布不同所致,此时使用非参数检验将无实际现实意义。SPSSAU建议使用箱线图进行检查,并且建议最终使用方差分析进行差异检验。

    • 可直接使用“直方图”直观展示数据正态性情况

    • 如果P小于0.05,但是中位数并没有明显的差异,说明差异来源于数据分布不同(而非中位数差异),可使用“箱线图”进行查看。

    SPSSAU操作截图如下:

疑难解惑

  • 关于多重比较问题?
  • 如果进行非参数检验Kruskal-Wallis时发现呈现出显著性,因而可考虑继续对比两两组别之间的差异性,选中“Nemenyi两两比较”即可输出【具体这里的多重比较为Nemenyi方法多重比较】;如果Kruskal-Wallis检验显示没有差异性,则不需要进行两两比较

  • 如果是两组之间的对比即使用MannWhitney检验,本身已经是两组比较,因而不需要继续两两比较。

  • 非参数检验的原理在于对比不同组别数据分布情况的差异性,数据分布情况通过箱线图体现,同时也可使用中位数表示数据分布情况(SPSSAU默认建议使用中位数值);有时候会出现一种情况即“显示有差异性,但是中位数值却一样显示没有差异”,此时可使用箱线图(可视化->箱线图)查看差异(而不使用中位数)。

  • 提示‘数据质量异常’如何解决?
  • 如果是X的某个组别下,Y的个数小于2个,此时会出现异常情况。建议使用分类汇总进行检查,确认此种异常情况后,使用筛选样本功能处理后再次分析即可。

  • 事后比较时:Nemenyi,Dunn’s t 检验和Dunn’s t 检验(校正p 值)如何选择?
  • 实际研究中,Dunn’t t 检验使用较多,Dunn’s t 检验(校正p 值)的检验效能较低非常保守(尤其是组别较多时),不建议使用。建议研究者参考文献进行选择即可。

  • P25,P75是什么意思?
  • 非参数检验时SPSSAU默认输出中位数,25%和75%分位数,同时建议结合箱线图对比数据分布的差异性情况等。